Mechanism of DNA damage tolerance.
نویسنده
چکیده
DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance (DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis (TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching (TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.
منابع مشابه
Homologous recombination maintenance of genome integrity during DNA damage tolerance
The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replication forks by providing mechanisms to circumvent the lesion and fill in the tracks of single-stranded DNA that are generated during...
متن کاملReplication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity
DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitina...
متن کاملMus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila
The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficien...
متن کاملP-62: Damage to Sperm DNA and Protamine Deficiency Induced by Risperidone in NMRI Mice
Background: Antipsychotic medication use is a common cause of hyperprolactinemia that shown to have adverse effects on male fertility. Risperidone is a combined serotonin/dopamine receptor antagonist that can cause elevations in prolactine level. Its mechanism of cytotoxic effects on testicular germ cells is not fully understood. In the present study we sought to elucidate the impact of risperi...
متن کاملDNA damage tolerance branches out toward sister chromatid cohesion
Genome duplication is temporarily coordinated with sister chromatid cohesion and DNA damage tolerance. Recently, we found that replication fork-coupled repriming is important for both optimal cohesion and error-free replication by recombination. The mechanism involved has implications for the etiology of replication-based genetic diseases and cancer.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- World journal of biological chemistry
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2015